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A novel hybrid approach for solving magnetostatic problems with an unbounded air domain is presented. The basic idea is to use
augmented dual grids for interfacing the Cell Method and BEM by indirect coupling, introducing equivalent surface field sources.
The field problem in finite domains is discretized by the Cell Method in terms of integral variables, i.e. line integrals of the magnetic
vector potential. Boundary integral conditions, formulated with the reduced magnetic scalar potential, are applied to avoid the air
region meshing. A mixed final symmetric algebraic system, which can be solved by fast iterative solvers like MINRES or SYMMLQ,
is finally obtained. The magnetic field in the air region is then easily reconstructed from equivalent sources. Numerical tests show
that the hybrid method is accurate even by using a collocation approach for discretizing boundary integral conditions.

Index Terms—Cell Method, Finite Integration Technique, Boundary Element, Integral Equation, Magnetostatics.

I. INTRODUCTION

HYBRID methods combining FEM and BEM advantages
have been developed in computational electromagnetics

since the early ’80s [1][2]. Main key strengths are avoiding air
region meshing and allowing easier pre– and post–processing
compared to FEM. These basic features generally lead to time
and cost reduction in the design of new products [3].

In the so-called discrete approaches, like the Cell Method
(CM) or the Finite Integration Technique (FIT), field problems
are formulated directly in algebraic form by using integral
variables, e.g. line integrals and fluxes. A CM–based integral
formulation for eddy current problems in thin shells was
presented in [4] and then extended to multiply connected shells
in [5]. It was proved that the CM can be coupled with the
BEM for magnetostatics [6] and for magnetodynamics [7].
Unfortunately, both of these methods led to unsymmetric final
system matrices solved by (LU) direct or iterative (GMRES)
solvers, which are typically resource and time consuming.

Recently, it was shown in [8] that boundary conditions in
both CM and FIT can be discretized by introducing a pair of
augmented dual grids. Starting from this result, a novel hybrid
approach for coupling CM and BEM in three–dimensional
magnetostatic problems is here presented. This leads to a final
algebraic mixed system matrix that is symmetric so that fast
iterative solvers like MINRES or SYMMLQ can be used.

II. HYBRID FORMULATION

Let Ω =
∪

k Ωk be the interior region, i.e. the the union
of n finite and connected subdomains Ωk ⊂ R3, k = 1 . . . n,
where magnetic materials are contained. Let ΩC = R3 \Ω be
the exterior region, i.e. the complementary part of Ω in the
free space, which is unbounded and includes magnetic field
sources. The interface boundary between interior and exterior
regions is then defined as Γ =

∪
k Γk, where Γk = ∂Ωk is the

boundary of each subdomain Ωk and is connected.

A. Interior Problem
As shown in [8], any subdomain has to be meshed by

augmented dual grids in order to properly discretize boundary
conditions by the CM. These grids are constructed as follows.
Dual grids G̃Ω and G̃Γ are first defined on Ω and Γ by joining
centroids of oriented edges, faces, and volumes of the primal
grid GΩ (tetrahedral mesh) and GΓ (the restriction of GΩ on
Γ). The augmented dual grid is then obtained as the union
G̃ = G̃Ω ∪ G̃Γ. Dual grids are defined along with the following
incidence matrices: CΩ (faces to edges on GΩ), C̃Ω = CT

Ω

(faces to edges on G̃Ω), CΓ (faces to edges on GΓ), G̃Γ = CT
Γ

(edges to nodes on G̃Γ), C̃ΩΓ (faces on G̃ to edges on G̃Γ).
Field problem variables of CM for magnetostatics are arrays

of DoF on GΩ and G̃: aΩ,aΓ (magnetic vector potential line
integrals on primal edges), bΩ,bΓ (magnetic fluxes on primal
faces), h̃Ω, h̃Γ (magnetic field line integrals on dual edges).

Topological equations are defined on each dual grid apart.
Magnetic fluxes on GΩ fulfill Gauss’ law bΩ = CΩaΩ, for
simply connected domains, and line integrals of the magnetic
field on G̃ fulfill Amperé’s law C̃Ωh̃Ω + C̃ΩΓh̃Γ = 0. Electric
currents are not here considered, since field sources are in ΩC .

The matrix constitutive relation for magnetic linear media
is here obtained by using the so-called energetic approach,
presented in [9]. The local relationship H(x) = νB(x), where
ν is the magnetic reluctivity, is expanded by piecewise uniform
bases wf defined for any primal face f and the corresponding
global relationship at discrete level becomes: h̃Ω = MνbΩ,
where matrix coefficients are Mν,ij =

∫
Ω
νwi(x) ·wj(x) dx.

Combining topological and constitutive relationships the
global equation for the interior magnetic problem in Ω reads:

C̃ΩMνCΩ aΩ + C̃ΩΓ h̃Γ = 0 (1)

where the array h̃Γ is used for the interface coupling.

B. Exterior Problem
Boundary integral conditions for the interior problem are

derived by an indirect BEM approach [2], defined as follows.
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The source magnetic field is given by Biot-Savart’s integral:

H0(x) = 1/4π

∫
Ω0

J(y)× x− y

∥x− y∥3
dy (2)

Because ∇·H0 = 0 and by the Helmholtz theorem, the mag-
netic field in ΩC splits as H = Hr+H0, where Hr = −∇φ is
the reduced field. The scalar potential φ is found after solving
an Exterior Neumann Problem, with ∂n φ = g as (unknown)
boundary condition [10]. If

∫
Γ
g(x) dx = 0, it is shown that

Fredholm’s integral equation:

−1/2σ(x) + T ∗ [σ] (x) = g(x), x ∈ Γ (3)

admits a unique solution σ such that

φ(x) = K [σ] (x) =

∫
Γ

Φ(x, y)σ(y) dy, x ∈ ΩC (4)

where Φ(x, y) = 1/(4π)∥x−y∥−1 is the fundamental solution
for ∆ and T ∗ [σ] (x) =

∫
Γ
σ(y) ∂nΦ(x, y) dy, x ∈ Γ.

The Steklov–Poincaré operator S, mapping the Dirichlet into
the Neumann datum, is obtained from (3) and (4). By inverting
(4) and by letting σ in (3), it can be expressed as:

g(x) = S[φ](x) = (−1/2 + T ∗) ◦K−1[φ](x) (5)

for any x ∈ Γ. This operator can be discretized by collocation
or Galerkin methods as br,Γ = S φ̃φφΓ, where br,Γ is the array
of the reduced magnetic flux density and φ̃φφΓ is the array of
scalar potentials on G̃Γ. S is made symmetric as in [1].

C. Coupled system

The interior and exterior problems are coupled by the
following interface conditions: the continuity of the magnetic
field line integrals h̃Γ = h̃0,Γ + G̃ΓφφφΓ and the continuity of
magnetic fluxes bΓ = b0,Γ+br,Γ, where subscript 0 indicates
arrays due to source fields. Combining interface conditions and
equations (1), a symmetric indefinite system is obtained:(

CT
ΩMνCΩ C̃ΩΓG̃ΓPΓ

PT
ΓG̃

T
Γ C̃

T
ΩΓ −PT

ΓSPΓ

)(
aΩ
φφφΓ

)
=

(
−C̃ΩΓ h̃0,Γ

PT
Γ b0,Γ

)
(6)

where matrix PΓ projects nodal DoF from GΓ to G̃Γ. Note
that, due to system symmetry, efficient iterative solvers like
MINRES or SYMMLQ can be used.

The equivalent source distribution σ(x) on the discretized
boundary is reconstructed from φφφΓ after solving the final
system (6). The magnetic field in ΩC is finally obtained at
the post-processing stage, as:

H(x) = H0(x)−
∫
Γ

∇xΦ(x, y)σ(y) dy (7)

without need of numerical differentiation as with direct BEM,
where the scalar potential (4) has to be explicitly computed.

III. NUMERICAL RESULTS

A 2D axisymmetric magnetostatic problem is considered in
order to get highly accurate results from 2D FEM simulations.
Let (r, z) be cylindrical coordinates. A magnetic disc (relative
magnetic permeability µr=1,000, 1 m radius, 0.2 m thickness),
centered at the origin, is excited by a circular loop (100
A current, 0.4 m radius), centered at (0,0.4). The disc is
discretized by 28,035 tetrahedral and 4,280 boundary triangular
elements. The FEM model is embedded into a disc (5 m radius)
with infinite BCs, discretized by 11,440 3rd order triangles.

The magnetic flux density components Br, Bz are compared
in Fig. 1 on a horizontal line (x = [0, 1], y = 0, z = 0.2),
located above the disc. Three–dimensional Hybrid Cell Method
(3D HCM) shows to be in very good agreement with 2D FEM.
The maximum discrepancies are eBr = 1.14%, eBz = 0.54%.
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Fig. 1. Magnetic flux density components Br (blue line) and Bz (green line)
for HCM and FEM, computed along the line x=[0,1], y=0, z=0.2.
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